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Polarizability of molecular chains: A self-interaction correction approach
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Standard density functional approximations greatly overestimate the static polarizability of long-chain poly-
mers, but Hartree-Fock or exact exchange calculations do not. We show that simple self-interaction corrected
approximations afford a viable alternative for accurate polarizability calculations within density functional

theory.
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Ground-state Kohn-Sham (KS) density functional theory
(DFT) has become extraordinarily popular for solving elec-
tronic structure problems in solid-state physics, quantum
chemistry, and materials science.! The accuracy of modern
generalized gradient approximations (GGAs) and hybrid
functionals has proven sufficient for many applications, often
with surprisingly small errors. Bond dissociation energies,
geometries, phonons, etc., are now routinely calculated with
errors of 10%-20%.

Local and gradient-corrected functionals overestimate
massively the static polarizability and hyperpolarizability of
molecular chains, especially conjugated polymers. This fail-
ure has been the subject of many studies over the last
decade,?'? studies which highlight the important role played
by the response field originating from the exchange-
correlation (XC) potential. The exact induced XC field coun-
teracts the applied external field, keeping the polarization
low. In the local (or gradient-corrected) density approxima-
tion (LDA), this field erroneously points in the same direc-
tion as the applied field.*~® Such failures of standard func-
tionals appear in other contexts, such as transport through
single molecules!! or the polarizability of large molecules.?

In contrast, these effects are easily captured within stan-
dard wave-function theory. In particular, Hartree-Fock (HF)
theory does not greatly overestimate the polarizabilities and
provides a good starting point for more accurate wave-
function treatments, such as Mgller-Plesset (MP) perturba-
tion theory. Thus exact exchange (EXX) DFT, the KS-DFT
method for minimizing the HF energy while retaining a
single multiplicative potential, provides a promising alterna-
tive and indeed has been found to give results very similar to
HE>#10 This improvement can be attributed to the orbital-
dependence of EXX, and the lack of self-interaction error,®
i.e., EXX is exact for one electron, unlike LDA or GGA.

However, EXX is only one among many possible self-
interaction free functionals that one may construct. In fact
any GGA can be corrected to become self-interaction free
[self-interaction corrected (SIC)] by direct subtraction of the
XC functional evaluated on each of the individual orbitals.'?
While this can be performed for either LDA or GGA, only
LDA has significantly improved energetics from this proce-
dure, but many investigators are searching for useful meth-
ods to correct GGAs for self-interaction.!? So the question
then becomes: does one really need EXX, or will any self-
interaction free functional perform equally well?

We perform SIC calculations for the polarizabilities of
hydrogenic chains using LDA and GGA. Our SIC potential
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is constructed using the optimized effective potential (OEP)
framework within the Krieger-Li-Iafrate (KLI)
approximation.'* Using results from accurate wave-function
methods as a benchmark, we find that the polarizabilities
calculated with KLI-SIC are in better agreement than those
obtained with KLI exact exchange (X-KLI), with the remain-
ing error attributed to the KLI approximation.'%!3

We start with a brief description of the SIC method used
in this work. In DFT,'® the total energy functional E[p',p']
(p? is the spin =1, ] density, p=2,p%) can be written as

E[p'.p"]=Ts[p] + f d*rp(r)v(r) + Ulp] + Ex[p'.p'],

(1)

with T the kinetic energy of the noninteracting KS orbitals,
v(r) the external potential, U the Hartree energy, and E, the
XC energy. For any GGA

occupied

ESUpt=ESS pl p' 1= 2 (UlpZ]+ ESS4p2,0]),

()

where p?=|¢7|? is the density of the nth KS orbital. Levy’s
minimization'” leads to a set of single particle KS-like equa-

tions for ¢ with corresponding eigenvalues e,‘,”SIC and occu-
pation numbers p;, (p7=2,pypy),
1 2 o o a,SIC o
- EV + veff,n(r) lpn =€, lpn . (3)

The effective potential v ,(r) is now KS-orbital depen-
dent and cannot be classified as a standard multiplicative KS
potential. For instance, it is ambiguously defined for unoccu-
pied KS orbitals since the SIC is only defined for the occu-
pied ones. The solution of Eq. (3) has followed several ap-
proaches. The simplest one is to solve it directly under a
normalization constraint with the resulting nonorthogonal or-
bitals undergoing an orthogonalization procedure.!> This
scheme, however, is not free of complications, since Eilc is
not invariant under a unitary transformation of the occupied
{7}. The solution'® is then to work with an auxiliary set of
localized orbitals {¢,} used for constructing v ,(r) and re-
lated to {¢;} by a unitary transformation chosen so as to
minimize E)s(ic
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A convenient alternative is offered by the OEP method"’
where the orbital-dependent v ,(r) is recast into a local
multiplicative orbital-independent potential. In this way the
SIC problem can then be solved as a normal KS problem.
However the construction of an OEP is computationally de-
manding. Here we adopt the KLI approximation,'* which is
practically easy to construct and retains most of the advan-
tages of the full OEP, being therefore well-suited to the SIC
problem.?® The orbital-independent KLI effective SIC Kohn-
Sham potential takes the form

vZs(r) = v(r) + vy (r) + V74 () + 75, (4)

where vy and UUGGA are the Hartree and GGA-XC poten-

tials. We define the SIC potentials by

uy¥(r) = - vy, 01(r), ©)

where vy, is the sum of the Hartree and GGA potentials,
and their Slater average as

NT

Wi (r) = E FmurS(r), (6)

where f;’(r):ﬁ;’ (r)/p“(r) is the auxiliary orbital density as a
fraction of the spin-density of its spin. Then

N

oSIC(r)+ Eﬁ:(l’)[AUUSIC Cu-] (7)

,SIC
o ()=

v
The orbital densities p; in Egs. (5)—(7) are calculated from
the auxiliary set of localized orbitals {¢7} instead of the ca-
nonical {¢7}. Both sets of orbitals give the same total density
p”. The response terms Av7>'C (being a constant), are ob-
tained by solving

2 ( = nm)AUU SIC W;TCSnIlC 17(7 SIC’ (8)

where 1% =[drp?

N7 — N7

2 fm=1 2000~
n=1

n=1

(r)h°(r). Furthermore,

5 =0, )

so that the linear system in Eq. (8) is of rank (N“-1) and
must be solved using a least-squares approach. The constant
C7 is set to AvgonS, (HOMO is the highest occupied molecu-
lar orbital). We have implemented this scheme in the DFT
code SIESTA.%!

To facilitate easy comparison with previous quantum
chemistry and EXX-DFT calculations,'” we chose as a test
system the widely studied linear hydrogen chains H, made
up of n H atoms with alternating H-H distances of 2a, and
3a,, with a, the Bohr radius. An optimized atomic orbital
basis set consisting of double zeta polarized s and triple zeta
polarized p functions is employed. The Pipek-Mezey local-
ization scheme,?? which minimizes the number of atoms over
which a given molecular orbital is delocalized, is used to
transform the canonical KS orbitals {¢/} into the localized
set {¢7}. As an example both the {¢7} and the {¢/} of Hg are
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FIG. 1. (Color online) The Pipek-Mezey localized molecular
orbitals {¢7} (left) and canonical Kohn-Sham orbitals {7} (right)
for the occupied states of the Hg molecule.

presented in Fig. 1. An algorithm based on pairwise Jacobi
rotations is found to be convenient to obtain the localized
orbitals with minimal computational overheads. However,
for larger systems a localization procedure based on conju-
gate gradients might be necessary to optimize convergence.
Finally the static polarizability a=du,/ dF, is calculated nu-
merically using finite differences.

Before presenting the results for the polarizability, we
comment on some interesting qualitative differences in the
ground state density of the H chains between LSDA/GGA
and KLI-SIC. We find that the semilocal functionals produce
only spin-unpolarized ground state densities while KLI-SIC
can lead to spin-polarized ground state solutions. In particu-
lar, the orbital densities of the auxiliary localized orbitals are
seen to exhibit a clear spin-polarized symmetry with the spin
components of each molecular orbital being localized over
different spatial regions. This becomes more prominent es-
pecially as the interatomic distance between the H atoms in
the H, molecular units is increased. However, in the system
geometries considered for the polarizability calculations the
spin-polarization of the electron density in KLI-SIC is neg-
ligible.

Table I contains the central results of this work. The first
column contains highly accurate (MP4) quantum chemical
results, which we take as exact. The next two columns show
LDA and PBE results,? demonstrating the LDA overesti-
mate (by about 100% for H,) of «, an overestimate that is
only slightly reduced by GGA. We checked several GGAs,
and they all had the same features. Small finite systems, such
as atoms, are well-known to overpolarize in LDA and GGA,
because their XC potentials are too shallow, and do not de-
cay with the correct asymptotic form, —1/r; but this is a
distinct effect from that discussed here, which is due to the
response to the electric field inside the molecule. Ours is a
bulk effect, not depending on the end points. We checked this
and found that the LB94 functional,>* specifically designed
to reproduce the correct asymptotic behavior, does not yield
any better results than the other GGAs and in fact worsens
the LDA a.

The next three columns in Table I list results of different
types of calculations using the Fock integral, and no corre-
lation. We note that HF slightly overestimates the polariz-
ability, but by less than 10%. An exact OEP treatment of the
same functional (X-OEP) yields essentially the same num-
bers. Our KLI scheme, applied to the same functional (X-
KLI), makes a noticeable overestimate, but the error remains
less than 20%, compared to OEP.

Now we focus on the SIC results. Regardless of the GGA
functional used, the KLI-SIC polarizabilities show a drastic
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TABLE I. Calculated polarizability « of H, chains obtained by using the KLI-SIC method with different XC functionals. The subscript
X indicates that correlation has been dropped from the XC potential. These are compared with MP4, HF, and exact exchange DFT (EXX)

results from Ref. 10

GGA EXX KLI-SIC Exchange only
Exact
Hy MP4 LDA PBE HF X-OEP  X-KLI LDA PBE LDA, PBE, SIC-LDA,  SIC-PBE,
H, 29.5 37.26 35.62 32.0 322 33.11 33.38 33.14 38.90 36.51 33.37 33.10
Hg 51.6 73.10 69.35 56.4 56.6 60.64 58.56 58.07 76.16 70.45 58.84 57.63
Hg 75.9 116.58  109.74 82.3 84.2 91.56 86.94 86.48 121.64  110.84 87.08 84.53
Hjo 166.36  155.31 12487  117.28  116.16  173.89  156.45 116.77 113.14
Hj, 1269 22055 20453 137.6 138.1 159.27 14796 14598  231.25 205.51 147.19 141.90

improvement with respect to those obtained with pure GGA.
Furthermore, PBE results are very close to LDA results.
There remains about a ~ 15% overestimate for H;, with re-
spect to MP4, but this is probably due to the KLI approxi-
mation and a full OEP treatment of SIC might improve re-
sults further."

We also checked if the inclusion of correlation was im-
portant for the excellent KLI-SIC results by running the cal-
culations with correlation removed. For the pure functionals,
LDA correlation slightly reduces the huge overestimate,
whereas PBE correlation has almost no effect. On the other
hand, for the KLI-SIC results, LDA correlation has almost no
effect, while PBE correlation corrects the PBEx result in the
wrong direction. This is consistent with the general result
that SIC-GGA includes some incorrect overcounting of gra-
dient effects.!3

The improved response obtained with orbital dependent
functionals is due to the opposing XC field, already demon-
strated in the literature for OEP exact exchange.!” Here we
verify that the same happens with the KLI-SIC scheme. In
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FIG. 2. (Color online) AVXC(z)zvgc(z)—ch for Hg plotted
against position (z) for (a) LDA, (b) SIC-LDA, (c¢) X-KLI, (e)
X-KLIS, and (f) SIC-LDAS. The applied external field is shown in
(d) and the black dots indicate the position of the H atoms.

Fig. 2 we plot AVxc defined as the difference between the
XC potential with and without an applied electric field
AVXC(Z)=V§<C(Z)—VXC for LDA, SIC-LDA, and X-KLI. We
denote by a superscript S results obtained by including only
the Slater average potential in Eq. (7), dropping the constant
terms. Clearly both contributions are significant in the final
XC potential. The Slater-only polarizabilities are shown in
Table II and reflect this.

By comparing the values of « in Tables I and II one may
conclude that the Slater average already contains important
corrections, but the bulk of the effect is contained in the
response term. For example, if one considers the « calculated
with LDA for H,, the polarizability is 220.5 for LDA, 193.9
for SIC-LDAS, and 147.9 for SIC-LDA. 1t is also interesting
to note that even at the level of the Slater average, SIC per-
forms better than X-KLI. This can be understood by looking
at the XC potential for SIC-PBE® and X-KLI® (Fig. 3) when
no external field is applied. The SIC-PBE potential exhibits
higher peaks in the intermolecular space between H, units
than X-KLI. This explains the quantitative difference in «
between the two cases. The improved performance of
X-OEP over X-KLI can be attributed'® to similar barriers in
the intermolecular region which, however, arise from the re-
sponse part of the X-OEP potential.

Finally we ask whether similar results can be obtained
with atomiclike corrections, which have the effect of making
the KS potential deeper at the atomic sites. We investigated
both the LDA+U% and the atomic LDA-SIC (ASIC)
methods?®?’ in this regard. The LDA+U results are ex-
tremely poor, as they provide polarizabilities larger than even
those obtained with simple LDA. The ASIC results are far

TABLE II. Static polarizability « of H, obtained from SIC and
X-KLI where only the Slater term in the KLI potential is used
(superscript S). Both XC and X-only results are shown for the
SIC-LDAS and SIC-PBES.

Hy SIC-LDAS SIC-PBES SIC-LDAY SIC-PBEy X-KLI®

Hy 35.37 35.12 36.25 35.16 35.78
Hg 67.74 67.13 68.92 66.34 69.17
Hg 105.91 104.89 107.57 102.97 108.72
Hy 148.64 146.18 150.86 143.10 152.90
Hi, 193.94 190.47 197.05 185.25 199.91
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FIG. 3. (Color online) XC potential plotted against distance (z)
for SIC-PBES (solid line) and X-KLIS. The gray inset plots the
difference between the two potentials.

more promising, being half-way between those of GGA and
of SIC (@=33.95, 63.67, 98.39, 137.42, and 178.87 for H,,,
respectively, with n=4, 6, 8, 10, and 12). In fact, if the ASIC
corrections relative to pure LDA were double those we
found, they would reproduce the HF results very accurately.
The above can be understood by the way the atomic correc-
tions are introduced. The H atoms are half-filled in the ab-
sence of an external field. Switching on the field produces a
tiny charge transfer, which, however, is amplified by the
LDA+U potential. As a result the already wrong LDA re-
sponse field gets amplified. The same does not happen with
ASIC, which improves the response over LDA by virtue of
the higher intermolecular barriers.

Before we conclude, a few comments on the computa-
tional efficiency of the KLI-SIC approach are pertinent. In
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principle, the numerical cost in constructing the SIC poten-
tial scales only linearly with the number of occupied molecu-
lar orbitals as opposed to the quadratic scaling in EXX.
However, KLI-SIC invloves a further localization step in-
cluding a unitary transformation of the occupied set of orbit-
als which introduces additional numerical overheads. For the
systems considered in this work, the computational effort
involved in the Pipek-Mezey localization scheme was found
to be negligible in comparison to the rate determining step
which is the evaluation of the individual orbital self-Hartree
potentials. Thus the KLI-SIC calculations were considerably
less expensive compared to the X-KLI calculations espe-
cially for the longer hydrogen chains. In general, however,
for systems that exhibit a complex molecular orbital struc-
ture, the overheads associated with the localization can be
nontrivial and the relative efficiency of KLI-SIC and X-KLI
is expected to be somewhat system dependent.

In conclusion, we have investigated the performance of
explicitly self-interaction corrected DFT functionals in esti-
mating the polarizabilities of molecular chains. We find that
SIC functionals do exhibit a field counteracting term in the
response part of the XC potential as a result of which the
calculated polarizability is much improved in comparison to
normal LDA/GGA. Furthermore, at the KLI level of ap-
proximation, the SIC functionals are also seen to perform
better than KLI exact exchange at computing the static po-
larizability of hydrogenic chains. This difference is attributed
to the presence of higher intermolecular barriers in the Slater
term of the KLI-SIC potential.
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